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A procedure for constructing two-dimensional incompressible potential flowfield
solutions with separation and a recirculation region is presented. It naturally makes
use of complex variable theory and other analysis techniques such as conformal
mapping and the generalized Poisson integral formula. Flowfield determination is
reduced to solution of a boundary value problem in various simple domains. The
entire velocity field is described analytically; stream function and velocity potential
contour maps are readily constructed. Example solutions are presented. Solutions for
sharp leading edge airfoils at arbitrary angle of attack are completely determined,
including the limiting angle of attack for upper-surface flow re-attachment. For other
configurations (e.g. circular cylinder, backward-facing step) the analytical solution
contains one or more free parameters, whose values may be inferred from boundary
layer theory or experiment.

1. Introduction
For nearly a century the belief has been held (and taught) that viscosity must

be taken into account to successfully model, even approximately, flowfields with
separation (Lamb 1932; Birkhoff & Zarantonello 1957). Concerning the ‘classical
hydrodynamics’ of an ‘ideal fluid’, Prandtl & Tietjens (1934) remark: ‘This domain
has been investigated so thoroughly – particularly by the mathematicians – that we
may consider it closed.’

As an example, the classical potential solution (supposedly unique) for uniform flow
past a flat-plate airfoil at angle of attack has a circulation component (i.e. lift) that
forces the flow to depart smoothly from the trailing edge. Stagnation occurs on the
lower surface near the leading edge, with infinite velocity at the leading edge where
the velocity vector reverses direction. It has been assumed that no inviscid mechanism
is available to remove this singularity. In the real world, so the argument goes,
viscosity would produce a blunting effect that would keep leading edge velocity finite
and cause leading edge separation for angles of attack greater than some minimal
level. The exception to requiring viscous influence is the trivial Helmholtz-type flow
(see Birkhoff & Zarantonello 1957; Birkhoff 1960) where adjacent streams having
different velocities coexist without mixing (i.e. the mixing layer, or slip line, separating
the two streams is infinitely thin and the velocity profile is a step function). One such
example is the flow over a backward-facing step, where a region of quiescent fluid
lies beneath a region of constant-velocity fluid downstream of the step, extending to
infinity; there is no closed recirculation region.
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Procedures are demonstrated herein for inviscid modelling of a separated,
recirculating flow region within an inviscid flowfield taking into account all relevant
boundary conditions. The formulation uses velocity magnitude and flow angle as
dependent variables. Boundary conditions are imposed primarily in terms of flow
angle. The choice of flow angle as a dependent variable leads to a stronger set
of boundary conditions for a given problem. At a solid surface the usual inviscid
condition of tangential flow (i.e. zero normal velocity) does not fix the velocity
direction, leading to the necessity of imposing a Kutta condition (i.e. a circulation)
to remove the ambiguity and move a stagnation point to the physically correct
location (trailing edge in the case of an airfoil). Additional discussion may be
found in Kuethe & Schetzer (1959). Tangential flow with prescribed direction can be
imposed when flow angle is used, bypassing the intermediate Kutta condition step,
yet producing the same result. Moreover, surface flow angle is geometric and can
be determined a priori for a particular geometry. Having determined an analytical
solution in terms of these variables, the use of complex variable theory allows a
straightforward analytical determination of stream function and velocity potential.
Stream function contours provide a very useful means of viewing the important
features of a given flowfield.

Rigorous analysis of problems using the generalized Poisson integral formula
sometimes produces a doublet-like solution element that models separation and
the recirculation region. Solution for other closely related configurations can be
simplified, in some cases, by superposition of the doublet element boundary conditions
and solution onto those of the base problem. Modelling of the recirculation
region can also be achieved by a vortex-pair element adding more versatility to
the procedure. Within the recirculation region, velocity becomes infinite at the
vortical centre, which is characteristic of an inviscid vortex. This is certainly more
acceptable than having infinite velocity at an expansion corner (e.g. flat-plate leading
edge).

For airfoil shapes producing unsymmetrical flowfields, the periodicity of the solution
on any contour enclosing the airfoil must be taken into account. Boundary conditions
for the separated flow region in that case are typically expressed in terms of periodic
step functions.

Results are presented for uniform flow over a backward-facing step, flow past a
circular cylinder with separation, flow over a rectangular cavity and flow past several
of a family of sharp leading and trailing edge biconvex airfoils at angle of attack. A
flat-plate airfoil is a member of this family (Karman–Trefftz) and results are included
for this case. For the backward-facing step, the cavity and the biconvex airfoils at
angle of attack, the separation point is fixed, while for the cylinder its location is a free
parameter. Circular cylinder flowfield graphics taken from Schlichting (1955) provide
for a qualitative comparison of prediction and experiment to provide some assessment
of the effects of viscosity. Other demonstrations of the utility of the velocity-flow angle
formulation may be found (e.g. Verhoff 1998, 2005).

Much of the research effort in fluid mechanics over the past three decades has
been devoted to developing numerical solution methods for various fluid dynamic
models (potential flow, Euler equations, Navier–Stokes equations, etc.). There are
numerous instances where application of the resulting computational tools has
produced remarkable results (see e.g. Jameson 2003). It is hoped that the results
presented here that show extension of classical potential flow methods to new problem
types might prompt renewed interest in developing simple and efficient engineering
tools based on potential theory. Other efforts already underway can be found in
Ikeda, Oda, & Shibata (2004) and Yeung & Parkinson (1993).
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Figure 1. Mapping to computational plane.

2. Brief review of potential flow theory and terminology
Two-dimensional incompressible inviscid flow is described in terms of a complex

potential Ω , defined in terms of velocity potential Φ and stream function Ψ as

Ω(z) ≡ Φ + iΨ, z ≡ x + iy. (2.1)

Velocity in the physical z plane is obtained from the relation

dΩ

dz
= qe−iθ , (2.2)

where q is velocity magnitude (normalized by free-stream value, q∞) and θ is flow
angle measured with respect to some chosen reference axis (e.g. x-axis). See Kuethe &
Schetzer (1959) for additional details.

Velocity potential and stream function have the properties

∂Φ

∂x
= q cos θ = u,

∂Φ

∂y
= q sin θ = v,

∂Ψ

∂x
= −q sin θ = −v,

∂Ψ

∂y
= q cos θ = u,

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

where u and v are the velocity components in the x and y directions, respectively.
Obviously, Φ and Ψ satisfy the Cauchy–Riemann conditions

∂Φ

∂x
=

∂Ψ

∂y
,

∂Φ

∂y
= −∂Ψ

∂x
, (2.4)

and therefore each satisfies the (linear) Laplace equation. Superposition can then be
used to produce more complicated flowfield descriptions from simple building-block
solutions.

The complex dependent variable F is defined as

F ≡ log

[
dΩ

dz

]
= ln q − iθ, (2.5)

which conveniently isolates flow angle θ , thereby simplifying the imposition of
boundary conditions.

3. Backward-facing step
The classical solution for attached flow over a backward-facing step is obtained

from the conformal mapping relation

z =
h

π
{
√

Z2 − 1 + log[Z +
√

Z2 − 1]}, Z ≡ X + iY, (3.1)

where h is the step height. This mapping, from Churchill (1948), is illustrated in
figure 1. The parameter h is simply a scaling factor for z. The flowfield for the step
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Figure 2. Attached flow streamlines.

geometry also represents that of the upper half of the symmetric flow over a semi-
infinite constant-thickness body with a square base at x = 0. If this thickness is taken
as the characteristic dimension, then h = 1/2, which will be assumed hereafter. The
real and imaginary components of (3.1) are

x =
1

2π

{√
r cos φ +

1

2
ln[(X +

√
r cos φ)2 + (Y +

√
r sinφ)2]

}
,

y =
1

2π

{√
r sinφ + tan−1

[
Y +

√
r sinφ

X +
√

r cos φ

]}
,

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

where

r ≡
√

(X2 − Y 2 − 1)2 + 4X2Y 2,

φ ≡ 1

2
tan−1

[
2X Y

X2 − Y 2 − 1

]
+

π

2
(1 − Sign[X]).

⎫⎪⎬
⎪⎭ (3.3)

Simultaneous numerical inversion of (3.2) provides X(x, y) and Y (x, y). The streamline
pattern in the physical z plane is shown in figure 2. Streamlines are images of lines
of constant Y in the computational Z plane (i.e. Ω ∼ Z).

The derivative of the mapping function (3.1) is

dz

dZ
=

1

2π

√
Z + 1

Z − 1
(3.4)

so that, from (2.2),

dΩ

dz
= 2π

dΩ

dZ

√
Z − 1

Z + 1
= qe−iθ , (3.5)

where q and θ are normalized velocity magnitude and flow angle in the z plane. In
the far field (i.e. Z → ∞), q =1 and θ = 0 so that

dΩ

dZ

∣∣∣∣
Z→∞

=
1

2π
and

dΩ

dz
=

√
Z − 1

Z + 1
. (3.6)

Then, from (2.5),

F = log

[
dΩ

dz

]
=

1

2
log

[
Z − 1

Z + 1

]
= ln q − iθ (3.7)



242 A. Verhoff

a b c e
X

–2.0 –1.0 1.0 2.0

–0.25

θb/π

–0.50

Figure 3. Surface flow angle (attached flow).

from which q and θ are determined as

q =

[
(X − 1)2 + Y 2

(X + 1)2 + Y 2

]1/4

, θ =
1

2
tan−1

[
Y

X + 1

]
− 1

2
tan−1

[
Y

X − 1

]
. (3.8)

Stagnation occurs at Z = 1 while velocity is infinite at Z = −1, a physically unrealistic
situation. The distribution of surface (boundary) flow angle θb mapped to the real
axis in the Z plane is shown in figure 3. Note that a factor ±2kπ (k an integer) can
be added to θ without altering results obtained from (3.5).

Postulating a recirculation region produced by separation from the corner (Z = −1)
with subsequent re-attachment at Z = a (denoted as point d in mapping figure 1),
surface boundary conditions mapped to the Z plane take the form

θb =

⎧⎨
⎩

0; X < −1, X > a,

π/2; |X| � 1,

−π; 1 � X � a.

(3.9)

Using the generalized Poisson integral formula, the solution for F can be obtained as

F (Z) =
1

π

∫ ∞

−∞

θb(σ )

Z − σ
dσ =

1

2
log [Z + 1] − 3

2
log [Z − 1] + log[Z − a]. (3.10)

From (2.5), (3.4) and (3.10),

dΩ

dZ
=

1

2π

(Z + 1)(Z − a)

(Z − 1)2
(3.11)

which integrates to

Ω(Z) =
1

2π

{
Z + 2

a − 1

Z − 1
+ (3 − a) log [Z − 1] + const.

}
. (3.12)

Velocity potential and stream function are, therefore,

Φ =
1

2π

{
X +

2(a − 1)(X − 1)

(X − 1)2 + Y 2
+

3 − a

2
ln[(X − 1)2 + Y 2] + const.

}
,

Ψ =
1

2π

{
Y − 2(a − 1)Y

(X − 1)2 + Y 2
+ (3 − a) tan−1

[
Y

X − 1

]}
.

⎫⎪⎪⎬
⎪⎪⎭ (3.13)

A closed recirculation region exists only for a =3, since the arctangent produces a
step function on the real axis (Y → 0+) at X = 1 (i.e. 0 for X > 1 and π for X < 1).
Retention of this term would preclude the real axis from being the image of the
wetting streamline (see figure 1), and the formation of a closed recirculation region.
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Figure 4. Separated flow streamline pattern.

This choice also makes the logarithmic term in (3.12) vanish. With this simplification
(3.12) and (3.13) become (after adjustment of the integration constant)

Ω(Z) =
1

2π

[
Z − 1 +

4

Z − 1

]
,

Φ =
1

2π
(X − 1)

[
1 +

4

(X − 1)2 + Y 2

]
,

Ψ =
1

2π
Y

[
1 − 4

(X − 1)2 + Y 2

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

These relations are equivalent to those for a doublet (centred at Z = 1) superimposed
with a uniform flow. A doublet is a combination of a source and sink coalescent at a
point. Velocity and flow angle relations obtained from (3.10) are

q =

[
(X + 1)2 + Y 2

(X − 1)2 + Y 2

]1/4
√

(X − 3)2 + Y 2

(X − 1)2 + Y 2
,

θ =
3

2
tan−1

[
Y

X − 1

]
− 1

2
tan−1

[
Y

X + 1

]
− tan−1

[
Y

X − 3

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)

Stagnation occurs at Z = −1 (a characteristic of compressive streamline slope
discontinuity) and at Z = 3, and velocity becomes infinite at the doublet centre.

Using the inversion relations for (3.2), stream function contours obtained from
(3.14) can be mapped to the physical z plane. These are shown in figure 4. Velocity is
zero at the external corner and at the re-attachment point. The corresponding Φ−ψ

mesh is presented in figure 5.
Modelling of separation and recirculation by means of a doublet can be generalized

for this geometry by rewriting (3.14) as

Ω(Z) =
1

2π

[
Z − p +

(1 + p)2

Z − p

]
,

Φ =
1

2π
(X − p)

[
1 +

(1 + p)2

(X − p)2 + Y 2

]
,

Ψ =
1

2π
Y

[
1 − (1 + p)2

(X − p)2 + Y 2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.16)
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Figure 5. Velocity potential–stream function mesh.
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Figure 6. Separated flow streamline pattern (p = 0.5).

where Z = p is the arbitrary doublet location. Differentiating Ω ,

dΩ

dZ
=

1

2π

(Z + 1)(Z − 2p − 1)

(Z − p)2
, (3.17)

and using the mapping derivative (3.4),

F = log

[
dΩ

dz

]
= log[Z −2p −1]+

1

2
log[Z +1]+

1

2
log[Z −1]−2 log[Z −p]. (3.18)

Physical plane velocity and flow angle are

q =

√
(X − 2p − 1)2 + Y 2

(X − p)2 + Y 2
{[(X + 1)2 + Y 2][(X − 1)2 + Y 2]}1/4,

θ = 2 tan−1

[
Y

X − p

]
− tan−1

[
Y

X − 2p − 1

]
− 1

2
tan−1

[
Y

X + 1

]
− 1

2
tan−1

[
Y

X − 1

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.19)

Stream function contours for p = 0.5 and p = 1.5 are shown in figures 6 and 7,
respectively. Velocity is zero at the external corner, at the base and at the re-attachment
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Figure 7. Separated flow streamline pattern (p = 1.5).
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Figure 8. Surface flow angle (separated flow).

point, Z = 2p + 1, and infinite at the doublet location Z = p. Boundary flow angle θb

mapped to the real axis in the Z plane is shown in figure 8 for p = 1.5. The fact that
θ can be adjusted by ±2kπ is evident in this figure. The re-attachment point in the z
plane is obtained from the mapping relation (3.1) as

xa(p) =
1

2π
{
√

(2p + 1)2 − 1 + ln[2p + 1 +
√

(2p + 1)2 − 1]}. (3.20)

Separation with recirculation can also be modelled by a vortex pair whose complex
potential is

Ω(Z) =
1

2π

{
Z − p − i

(p + 1)2 + s2

2s
log

[
Z − p + is

Z − p − is

]}
, (3.21)

where the vortices are located at Z = p ± is. See Rauscher (1953) for additional details.
Velocity potential and stream function are

Φ =
1

2π

{
X − p +

(p + 1)2 + s2

2s

[
tan−1

(
Y + s

X − p

)
− tan−1

(
Y − s

X − p

)]}
,

Ψ =
1

2π

{
Y − (p + 1)2 + s2

4s
ln

[
(X − p)2 + (Y + s)2

(X − p)2 + (Y − s)2

]}
.

⎫⎪⎪⎬
⎪⎪⎭ (3.22)
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Figure 9. Separated flow streamline pattern (p = 1.0, s =0.35).

The left-hand stagnation point (i.e. the image of the external corner) is at Z = −1,
while the right-hand stagnation point (i.e. the re-attachment point) is at Z = 2p + 1,
as was the case for the doublet model.

The derivative of (3.21) when combined with the mapping derivative (3.4) gives

dΩ

dz
=

(Z − 2p − 1)
√

Z + 1
√

Z − 1

(Z − p + is)(Z − p − is)
, (3.23)

which provides the velocity and flow angle relations

q =

√
(X − 2p − 1)2 + Y 2

[(X − p)2 + (Y + s)2][(X − p)2 + (Y − s)2]

× {[(X + 1)2 + Y 2][(X − 1)2 + Y 2]}1/4,

θ = tan−1

[
Y + s

X − p

]
+ tan−1

[
Y − s

X − p

]
− tan−1

[
Y

X − 2p − 1

]

− 1

2
tan−1

[
Y

X + 1

]
− 1

2
tan−1

[
Y

X − 1

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.24)

Stream function contours for p = 1.0 and s =0.35 are shown in figure 9. Velocity is
finite everywhere except at the vortex centres, Z = p ± is. The distribution of surface
flow angle θb mapped to the real axis in the Z plane is shown in figure 10. Note,
as was pointed out previously, the equivalence of flow angles 0 and −2π, along with
π/2 and −3π/2. Even though there appears to be quadrant ambiguity, sin θ and cos θ

behave properly for calculation of longitudinal and lateral velocity components. The
re-attachment point in the z plane for the vortex-pair model is also given by (3.20).

The vortex-pair model (3.21) has two free parameters (i.e. p and s), while the
doublet model (3.16) has only one (i.e. p). Streamline patterns for the two models
are qualitatively similar outside of the recirculation regions (compare figures 4 and
9). The vortex-pair model gives a clearer definition of the recirculation region, but is
slightly more difficult to implement computationally. In the limit of vanishing s, the
two models are equivalent.
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Figure 11. Mapping to computational plane.

4. Circular cylinder
Because of their somewhat similar nature, solution elements and procedures for the

backward-facing step problem carry over to construction of the solution for flow past
a circular cylinder with separation, bypassing solution via the generalized Poisson
integral formula. In general, this is not the case. Vertical symmetry for the cylinder
flowfield will be assumed.

The familiar Joukowsky mapping

Z = z +
1

z
, Z = X + iY (4.1)

collapses the unit semicircle onto the real axis in the computational Z plane, as shown
in figure 11. Real and imaginary component relations are

X = x +
x

x2 + y2
, Y = y − y

x2 + y2
. (4.2)

The inverse relations are

x = 1
2
[X +

√
ρ cosψ], y = 1

2
[Y +

√
ρ sinψ], (4.3)

where

ρ ≡
√

(X2 − Y 2 − 4)2 + 4X2Y 2,

ψ ≡ 1

2
tan−1

[
2XY

X2 − Y 2 − 4

]
+

π

2
(1 − Sign[X]).

⎫⎪⎬
⎪⎭ (4.4)
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Figure 12. Separated flow streamline pattern (p =2, b = 1).
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Figure 13. Separated flow streamline pattern (p = 1.8, b = 1).

Modelling of separation and recirculation can be achieved using a further
generalization of the doublet model (3.16), namely

Ω(Z) = Z − p +
(p − b)2

Z − p
,

Φ = (X − p)

[
1 +

(p − b)2

(X − p)2 + Y 2

]
,

Ψ = Y

[
1 − (p − b)2

(X − p)2 + Y 2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where Z = p is again the doublet location and Z = b is the separation point. Since
the separation point is not fixed, as was the case for the backward-facing step, the
doublet model has two free parameters for this application. Stream function can be
mapped back to the physical plane using the component relations (4.2).

Stream function contours for the parameter combinations (p =2, b = 1),
(p =1.8, b = 1) and (p = 2.2, b =1.5) are shown in figures 12–14. The separation
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Figure 14. Separated flow streamline pattern (p = 2.2, b =1.5).

and re-attachment points as obtained from (4.2) are

xb =
b

2
,

xa = 1
2
[2p − b +

√
(2p − b)2 − 4].

⎫⎬
⎭ (4.6)

From (4.1) and (4.5), the derivatives of the mapping function and Ω are

dZ

dz
=

1

2
[Z

√
Z2 − 4 − Z2 + 4],

dΩ

dZ
=

(Z − b)(Z − 2p + b)

(Z − p)2
, (4.7)

which combine to give

dΩ

dz
=

1

2
[Z

√
Z2 − 4 − Z2 + 4]

(Z − b)(Z − 2p + b)

(Z − p)2
. (4.8)

The first factor in this result pertains to the attached-flow solution for the cylinder,
and can be expressed in terms of real and imaginary parts as

1
2
[Z

√
Z2 − 4 − Z2 + 4] = 1

2
[
√

ρ(X cos ψ − Y sinψ) − X2 + Y 2 + 4]

+ i
2
[
√

ρ(Y cosψ + X sinψ) − 2XY ]. (4.9)

This provides the attached-flow field solutions for q and θ , namely

qo = 1
2

√
[
√

ρ(X cos ψ − Y sinψ) − X2 + Y 2 + 4]2 + [
√

ρ(Y cos ψ +X sinψ) − 2XY ]2,

θo = − tan−1

[ √
ρ(Y cos ψ + X sinψ) − 2XY

√
ρ(X cos ψ − Y sinψ) − X2 + Y 2 + 4

]
.

⎫⎪⎬
⎪⎭

(4.10)

On the real axis (Y = 0),

θo(X, 0) =

⎧⎨
⎩− tan−1

[
X√

4 − X2

]
; |X| � 2,

0; |X| > 2,

(4.11)
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Figure 16. Surface flow angle (separated flow).

For the separated flow situation, q and θ are obtained from (4.8) as

q = qo

√
[(X − b)2 + Y 2][(X − 2p + b)2 + Y 2]

[(X − p)2 + Y 2]
,

θ = θo + 2 tan−1

[
Y

X − p

]
− tan−1

[
Y

X − b

]
− tan−1

[
Y

X − 2p + b

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.12)

The distribution of θo along the real axis in the Z plane (i.e. Y =0) obtained
from (4.10) or (4.11) is shown in figure 15. The separated-flow distribution for p =2,
b =1 obtained from (4.12) is shown in figure 16. These two figures illustrate the ease
with which boundary conditions in terms of flow angle can be implemented. The
distribution of q for the same conditions is shown in figure 17. (The coordinate X
has been parametrically replaced by arc length σ ). Velocity becomes infinite at the
doublet centre location. The attached-flow velocity qo is also shown for reference; the
classical sine function variation on the cylinder surface is evident.
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Figure 18. Separated flow streamline pattern (p = 1.7, b = 0.7, s = 0.4).

The separation and recirculation region for the cylinder can also be modelled by
slightly modifying the vortex-pair model (3.21) in the form

Ω(Z) = Z − p − i
(p − b)2 + s2

2s
log

[
Z − p + is

Z − p − is

]
. (4.13)

The vortex centres are again at Z = p ± is and Z = b is the separation point location.
The model has three free parameters. The re-attachment point is at Z =2p − b.
Velocity potential and stream function are

Φ = X − p +
(p − b)2 + s2

2s

{
tan−1

[
Y + s

X − p

]
− tan−1

[
Y − s

X − p

]}
,

Ψ = Y − (p − b)2 + s2

4s
ln

[
(X − p)2 + (Y + s)2

(X − p)2 + (Y − s)2

]
.

⎫⎪⎪⎬
⎪⎪⎭ (4.14)

Stream function contours for the parameter combinations (p = 1.7, b =0.7, s = 0.4)
and (p = 2.1, b = 0.7, s = 0.3) are shown in figures 18 and 19. The separation and
re-attachment points are also given by (4.6).

Schlichting (1955) provides summary details from a boundary-layer solution which
predicts the separation point for a circular cylinder to be at approximately 70o polar
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Figure 19. Separated flow streamline pattern (p = 2.1, b =0.7, s = 0.3).

Figure 20. Flow visualization graphic.

angle. Using (4.6), the corresponding value of b is approximately 0.7. Flow visualization
graphics from Schlichting (1955, p. 192, figures 11.5d and 11.5e) are presented in fig-
ures 20 and 21. The cylinder velocity (and Reynolds number) for the two graphics are
different, but they can be compared with the inviscid predictions of figures 18 and 19.
Although any comparison must be strictly qualitative, adjustment of the parameters
p and s gives a reasonable likeness of the major flowfield features. Additional flow
visualization graphics can be found in Goldstein (1957, plates 7, 8 and 31), which
provide further qualitative support for the separation model presented above.

5. Biconvex airfoils
The Karman–Trefftz family of biconvex airfoils is mapped to the unit circle in the

w plane by the transformation

z − 2

z + 2
=

(
w − 1

w + 1

)2−τ/π

, w ≡ u + iv, (5.1)
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Figure 21. Flow visualization graphic.
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Figure 22. Mapping to unit circle plane.

where τ is the leading/trailing edge angle. The mapping of these sharp leading/trailing
edge shapes is illustrated in figure 22. When τ = 0, (5.1) reduces to the classical flat
plate to unit circle mapping. The general Karman–Trefftz mapping, as described in
Rauscher (1953), allows for a blunt leading edge, camber and finite trailing edge
angle.

Inversion of the mapping relation (5.1) gives

w − 1

w + 1
=

(
z − 2

z + 2

)π/(2π−τ )

, lim
z→∞

(
w

z

)
=

2π − τ

2π
(5.2)

from which the mapping derivative is obtained in mixed form as

dw

dz
=

2π

2π − τ

(w + 1)(w − 1)

(z + 2)(z − 2)
. (5.3)

The component surface mapping can be derived from (5.1) in the form

x(β) =
2(1 − λ2)

1 + λ2 − 2λ cosµ
, y(β) =

4λ sinµ

1 + λ2 − 2λ cos µ
, (5.4)

where

λ(β) ≡
[
1 − cos β

1 + cos β

]1−τ/2π

, µ(β) ≡
(

π − τ

2

)
Sign[π − β] (5.5)
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Figure 24. Boundary flow angle (attached flow).

and β is the unit circle polar angle. From (5.2) the real and imaginary components
of w can be obtained as

u(x, y) =
1 − R2

1 + R2 − 2R cos ω
, v(x, y) =

2R sinω

1 + R2 − 2R cos ω
, (5.6)

where

R ≡
[√

(x2 + y2 − 4)2 + 16y2

(x + 2)2 + y2

]π/(2π−τ )

, ω ≡ π

2π − τ
tan−1

[
4y

x2 + y2 − 4

]
. (5.7)

To properly model a leading-edge separation bubble for the case where the biconvex
airfoil is at angle of attack, the w plane must be mapped to the periodic ζ plane to
account for flowfield periodicity. This mapping, from Churchill (1948), is

w = −e−iζ , ζ ≡ ξ + iη, (5.8)

and is illustrated in figure 23.
Because of the simplicity of this mapping, an efficient solution strategy consists of

deriving the unit circle solution in the periodic ζ plane and then transform to the w
plane by means of (5.8). Surface flow angle boundary conditions for attached uniform
flow past the circle are shown in figure 24. The periodic harmonic function whose
imaginary part has this saw-tooth boundary distribution is

Fo = ln q − iθ = log[1 + eiζ ] + log[1 − eiζ ], (5.9)
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Figure 25. Boundary flow angle (doublet).

where q and θ are velocity and flow angle in the unit circle flowfield. In terms
of w,

ln q − iθ = log

[
dΩ

dw

]
= log

[
1 − 1

w2

]
, (5.10)

so that the complex potential for attached flow has the familiar form

Ωo = Φo + iΨo = w +
1

w
. (5.11)

Referring to the previous analyses, modelling of leading edge separation with
recirculation by a doublet-like element requires a boundary flow angle distribution
as shown in figure 25. The doublet is centred at ζ = p with separation at ζ = 0 and
re-attachment at ζ = a. This distribution is a combination of three step functions, and
the periodic harmonic function whose imaginary part has this boundary distribution
is

Fd = log[1 − ei(ζ−a)] − 2 log[1 − ei(ζ−p)] + log[1 − eiζ ] − i

(
p − a

2

)
. (5.12)

Introducing the mapping (5.8) and superimposing with (5.10) gives the unit circle
solution with separation

ln q − iθ = log

[
dΩ

dw

]
= log

[
e−iα 1

w2

(w − 1)(w + 1)2(w + e−ia)

(w + e−ip)2

]
. (5.13)

Evaluation of (5.12) in the far field (i.e. for large η), defines the induced angle of
attack as

α ≡ p − a

2
. (5.14)

From (5.13),

dΩ

dw
= e−iα 1

w2

(w − 1)(w + 1)2(w + e−ia)

(w + e−ip)2
, (5.15)

which is readily integrated to give the complex potential in the w plane. One of the
resulting terms has the logarithmic form log[1 + eipw], whose coefficient must vanish
in order that a closed recirculation region be produced. A similar situation arose in



256 A. Verhoff

1.5

1.0

0.5

0 0.05

a(α)

p(α)

α
0.10 0.15

Figure 26. Doublet location and re-attachment point.

the backward-facing step analysis, leading to (3.14). This requires the condition

cos

(
a

2

)
cos p − cos

(
a

2
− 2p

)
= 0. (5.16)

The complex potential is then

Ω = we−iα +
eiα

w
− 4i sinp[cos(p − α) − cosα]

1 + eipw

+ i[2 sin(p + α) − sin(2p − α) − sinα] log w + const. (5.17)

Relations (5.14) and (5.16) have been used to simplify coefficients. The integration
constant can be selected so that Ψ = 0 coincides with the surface streamline.

Simultaneous solution of (5.14) and (5.16) allows the parameters p (doublet location)
and a (re-attachment point location) to be expressed as functions of the free parameter
α (i.e. angle of attack). These relations are shown in figure 26. For values of α greater
than approximately 0.19 (∼11◦), solutions do not exist, which implies that for such
values of α the flow does not re-attach. The limiting numerical values of p and a are
1.029 and 1.677, respectively. Referring to (5.8) and (5.14) and figures 23 and 25, the
re-attachment point can be related to the unit circle polar angle β by

ξ = a = 2p − 2α, w = eiβa = −e−2i(p−α), βa = π − 2p − 2α. (5.18)

Physical plane surface coordinates can then be obtained from (5.4).
Velocity potential and stream function can be obtained from (5.17) as

Φ = (u cosα + v sin α)(g + 1) − [2 sin(p +α) − sin(2p − α) − sinα] tan−1

[
v

u

]
− 4 sinp[cos(p − α) − cos α] (u sinp + v cos p) f ,

Ψ = (u sinα − v cos α) (g − 1) − 1
2
[2 sin(p + α) − sin(2p − α) − sinα] ln g

− 4 sinp [cos(p − α) − cosα] (1 + u cosp − v sinp)f

+ 2 sinp[cos(p − α) − cos α],

f ≡ [(1 + u cosp − v sinp)2 + (u sinp + v cosp)2]−1; g ≡ (u2 + v2)−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.19)
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Figure 27. Velocity potential–stream function mesh (α = 10◦).
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Figure 28. Separated flow streamline pattern (τ = .50, α = 8◦).

The velocity potential–stream function mesh in the w plane obtained from (5.19)
is shown in figure 27 for α = 10◦. Using (5.6), stream function contours for any of
the family of biconvex airfoils can be mapped to the physical plane as shown in fig-
ures 28–31. Figures 28 and 29 show contours for τ = 0.50 at α = 8◦ and 11◦. Figures 30
and 31 show contours at α = 11◦ for τ = 0.25 and τ = 0 (i.e. flat plate). The velocity
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Figure 29. Separated flow streamline pattern (τ = .50, α =11◦).
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Figure 30. Separated flow streamline pattern (τ = .25, α =11◦).

potential–stream function mesh in the z plane is shown in figure 32 for τ = 0.50 and
α = 11◦.

Velocity and flow angle in the physical plane can be obtained by combining the
mapping derivative (5.3) and (5.13), with the result

ln q − iθ = log

[
dΩ

dw

]
+ log

[
dw

dz

]
= log

[
e−iα 1

w2

(w − 1)(w + 1)2(w + e−ia)

(w + e−ip)2

]

+ log

[(
2π

2π − τ

)2
(w + 1)(w − 1)

(z + 2)(z − 2)

]
, (5.20)

where w is expressed in terms of x and y by means of (5.6). A constant term has been
added to account for the far-field behaviour noted in (5.2). The real and imaginary
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Figure 31. Separated flow streamline pattern (τ = 0, α = 11◦).
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Figure 32. Velocity potential–stream function mesh (τ = .50, α =11◦).

parts of (5.20) yield the relations

q =

(
2π

2π − τ

)2
√

[(u + 1)2 + v2]

[(x + 2)2 + y2]

[(u − 1)2 + v2]

[(x − 2)2 + y2]

(u2 + u + v2)2 + v2

(u2 + v2)5/2

·
√

(u2 − u + v2)2 + v2
√

u2 + v2 + 1 + 2u cos(2p − 2α) − 2v sin(2p − 2α)

u2 + v2 + 1 + 2u cosp − 2v sinp
,

θ =α + 2 tan−1

[
v

u2 + u + v2

]
− tan−1

[
v

u2 − u + v2

]
− tan−1

[
v

u + 1

]
− tan−1

[
v

u−1

]

− 2 tan−1

[
u sinp + v cosp

u2 + v2 + u cosp − v sinp

]
+ tan−1

[
y

x + 2

]
+ tan−1

[ y

x − 2

]
+ tan−1

[
u sin(2p − 2α) + v cos(2p − 2α)

u2 + v2 + u cos(2p − 2α) − v sin(2p − 2α)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.21)
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Figure 34. Mapping to computational plane.

Surface velocity corresponding to the conditions of figure 29 (i.e. τ =0.50 and α =11◦)
is shown in figure 33.

This analysis can be extended to any blunt-nosed airfoil shape that can be mapped
to the unit circle (e.g. general family of Karman–Trefftz profiles). The separation
point location would have to be estimated from some additional analysis, such as
boundary layer theory.

6. Rectangular cavity
Rectangular cavity geometries can be mapped onto the real axis of the

computational Z plane by means of the Schwarz–Christoffel transformation, which
defines the mapping function derivative as

dz

dZ
= K

√
1 − Z2

δ2 − Z2
, Z = X + iY. (6.1)

Integration gives

z = K E(Z |δ) + const., (6.2)

where E(Z|δ) represents the elliptic integral of the second kind. The factor K is a
scaling parameter which can be chosen so that the lips of the cavity are located at
z = ±1. The parameter δ controls the cavity depth. The real and imaginary parts of
(6.2) provide x and y as functions of X and Y. As was the case in the backward-facing
step analysis, simultaneous numerical inversion of (6.2) provides X and Y as functions
of x and y. The mapping (6.2) is illustrated in figure 34. For a non-rectangular cavity
where the front and rear vertical sides have different dimensions and the floor remains
horizontal, the mapping is expressed as a combination of elliptic integrals of the first,
second and third kind.
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Figure 35. Separated flow streamline pattern (Aspect ratio= .25, s = .20).
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Figure 36. Separated flow streamline pattern (Aspect ratio= .50, s = .20).

Using the generalized vortex-pair model (4.13) and its component relations (4.14)
in the Z plane, stream function contours can be mapped back to the z plane by the
numerical inversion relations for X and Y mentioned above. Applicable parameter
values are p =0 and b = −1, while s remains arbitrary. Stream function contours are
shown in figures 35 and 36 for cavity aspect ratios of 0.25 and 0.50, respectively, and
for s = 0.20. The value of s changes the shape of the dividing streamline to a certain
extent, but does not affect the streamline departure angles at the cavity lips. These
angles are ±π/4, and are a consequence of solutions of Laplace’s equation.

7. Modelling extensions
The preceding models of separated flow and associated recirculation region typically

relocate an infinite velocity singularity from the solid boundary to the centre of the
recirculation region. The exception is the circular cylinder which has no boundary
singularity. By moving the singularity ‘out of the way’, the solution becomes more
realistic (but far from perfect), as far as surface conditions are concerned.

An obvious first extension would involve removing the vortical flow singularity.
This can be done without undue effort by starting with a vortex pair model such as
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(3.21). The flowfield of an isolated potential flow vortex located at Z = p + i s in the
computational plane is described by

Ω = i K log[Z − p − is]. (7.1)

The vortex strength is K and the streamlines are concentric circles. Velocity is infinite
at the centre and decays to zero in the far field.

If a second image vortex of equal strength but opposite rotation located at
Z = p − is is introduced, the resulting superimposed streamline pattern is as shown
in figure 37. The closed streamlines remain circular but are no longer concentric. The
pattern is symmetric about the X-axis, which can be replaced with a solid boundary.
Superposition of a uniform flow in the positive X direction leads to the vortex-pair
models (3.21) and (4.13).

Considering the upper half-plane flow pattern of figure 37, any of the closed circular
streamlines (denoted by radius ρ) can be selected as a boundary between the outer
potential flow and an inner core region where a solid-body-like rotational flow can be
imposed in place of the potential flow. The exterior flow is unaffected by the size of
the core region (i.e. ρ) and the inner region streamlines remain circular, although their
numerical designation changes. The velocity distribution in the radial direction can
be made continuous, but with a sharp peak (i.e. slope discontinuity) at the interface
boundary. Additional details can be found in Rauscher (1953).

The velocity field of this extended model subsequently can be mapped to the physical
z plane (e.g. to the backward-facing step configuration). Application of the mapping
relation to the core region where the flow is rotational can be justified by the fact
that the inner flow description is itself an approximation, and that the end result is
an entire field free of singularities. The distortion of the core boundary depends on
the potential flow solution and ρ, the core radius in the Z plane. The velocity (and
pressure) distribution on the solid boundary likewise depends only on the potential
solution.

A possible refinement to this extended model might employ some sort of viscous
smoothing at the core boundary, applied in the computational Z plane, to remove the
velocity slope discontinuity (i.e. sharp peak). In the Z plane the boundary is circular
thereby simplifying the analysis. This would allow the influence of the core flow to
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extend into the potential region to a certain degree. Some criterion (e.g. empirical)
would need to be developed for the determination of ρ for a given class of geometries.

8. Discussion
Procedures have been demonstrated for obtaining two-dimensional incompressible

potential flowfield solutions with separation and recirculation regions. Fixed
separation and re-attachment points are not a requirement, depending on the geometry
being considered. In certain situations, free solution parameters exist that may be
approximately evaluated by appealing to experiment and/or viscous theory.

Use of flow angle to impose and manipulate boundary conditions makes for better
overall understanding and allows ingenuity to play a role in extending the procedures
to configurations other than those analysed herein. For certain geometries, solutions
can be constructed using building-block elements, such as a doublet or vortex pair,
bypassing a formal mathematical analysis.

Separated flow solutions have been presented for a backward-facing step, circular
cylinder, rectangular cavity and biconvex airfoils. For the circular cylinder, analytical
streamline patterns, when compared with experimental flow visualization graphics,
show that major flowfield features are predicted reasonably well.

Prior to evaluating the utility of these simplified models for practical application,
criteria must be developed for determining numerical values for the free parameters
associated with various airfoil and cavity geometries and classes of bluff body shapes.
For the circular cylinder results presented herein, crude selection of parameter values
based on visual comparison with experimental results produced reasonably good
correlation. Encouraged by this, empirical correlations for various geometry types
appear to be a good starting point for this task. If these modelling procedures
show promise as a framework for developing simple engineering prediction tools,
then additional refinements would be in order. A simple procedure for removing the
singularity within the vortical recirculation region by means of a core having solid
body rotation has been outlined.

It is also hoped that this effort will spur some renewed interest in boundary
layer theory, thereby providing insight into physical phenomena that only analytical
solutions (guided by experiment) can offer. In the present context, separation point
locations can be estimated by boundary-layer methods for smooth configurations
without sharp corners that fix the separation point location. Likewise, inviscid dividing
streamline (baseline) trajectories are well defined analytically for subsequent viscous
shear layer analysis. Also of interest is the incorporation of flow angle boundary
conditions into potential/Euler computational fluid dynamics (CFD) codes to asses
their ability to duplicate the exact solutions presented herein. Comparisons with
analytical solutions provide an excellent means for evaluating proper numerical
implementation of boundary conditions (surface and far field) in these codes.
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